오늘본 상품

Product Name :
Human Vimentin ELISA Kit
Product Type :
Kits
Application(추가정보) :
sELISA
Reactivity :
Human
Storage :
All kit components of this kit are stable at 2 to 8°C. Any unused reconstituted standard should be discarded or frozen at -70°C. Standard can be frozen and thawed one time only without loss of immunoreactivity.
Sensitivity :
< 0.411 ng/ml
Sample Type :
Human serum, plasma, cell lysate, culture supernatants, buffered solution
Form :
Pre-coated plate
Detection range :
0.78~50 ng/ml
Background :
Vimentin is a protein that in humans is encoded by the VIM gene. Vimentin is a type III intermediate filament (IF) protein that is expressed in mesenchymal cells. IF proteins are found in all metazoan cells as well as bacteria. IF, along with tubulin-based microtubules and actin-based microfilaments, comprise the cytoskeleton. All IF proteins are expressed in a highly developmentally-regulated fashion; vimentin is the major cytoskeletal component of mesenchymal cells. Because of this, vimentin is often used as a marker of mesenchymally-derived cells or cells undergoing an epithelial-to-mesenchymal transition (EMT) during both normal development and metastatic progression. Vimentin plays a significant role in supporting and anchoring the position of the organelles in the cytosol. Vimentin is attached to the nucleus, endoplasmic reticulum, and mitochondria, either laterally or terminally. The dynamic nature of vimentin is important when offering flexibility to the cell. Scientists found that vimentin provided cells with a resilience absent from the microtubule or actin filament networks, when under mechanical stress in vivo. Therefore, in general, it is accepted that vimentin is the cytoskeletal component responsible for maintaining cell integrity. (It was found that cells without vimentin are extremely delicate when disturbed with a micropuncture). Transgenic mice that lacked vimentin are functionally normal. It is possible that the microtubule network may have compensated for the absence of the intermediate network. This result supports an intimate interactions between microtubules and vimentin. Moreover, when microtubule depolymerizers were present, vimentin reorganization occurred, once again implying a relationship between the two systems.
Background reference :
1) Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M, Pallari HM, Goldman RD (2009). "Introducing intermediate filaments: from discovery to disease". J Clin Invest 119 (7): 1763–71. doi:10.1172/JCI38339. PMC 2701876. PMID 19587451
2) Cabeen MT, Jacobs-Wagner C (2010). "The bacterial cytoskeleton". Annu Rev Genet 44: 365–92. doi:10.1146/annurev-genet-102108-134845. PMID 21047262.
3) Fuchs E., Weber K. (1994). "Intermediate filaments: structure, dynamics, function, and disease". Annu Rev Biochem 63: pp. 345–82
4) Chang L, Shav-Tal Y, Trcek T, Singer RH, Goldman RD. (2006). "Assembling an intermediate filament network by dynamic cotranslation". J Cell Biol 172 (5): 747–58. doi:10.1083/jcb.200511033
Database link - SwissProt no.
P08670